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This report provides an overview of ROSS,
an object-oriented language currently being
developed at Hand. The goal of ROSS is to
provide a programming environment in which
users can conveniently design, test, and
modify large knouledge-based simulations of
complex mechanisms. Object-oriented
proqramming languages, and BOSS in
particular, enforce a message-passing style
of programming in which the system to be
modeled is represented as a set of objects
and their behaviors (rules for object
interaction). This style is especially
suited to simulation, since the mechanism
or process to be simulated say have a
decomposition that maps naturally onto
objects, and the real-world interactions
'between the objects may be easily modeled
by object behaviors and object essaqe
transmissions. In addition to describing .
some of the basic ROSS commands and
features, the report discusses some
software that interfaces directly with
ROSS, including a sophisticated .. - - ,
screen-oriented editor and a color graphics __

package. Facilities for browsing among
objects and their behaviors are also
described, and examples of browsing and
editing are presented using SWIRL, a
military combat simulation written in ROSS.
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PREFACE

As part of a concept-development effort within the Force Employment Program of Project -

AIR FORCE, Rand has been investigating techniques to improve computer technology for mili-
tary combat simulations. This work has focused on developing a research environment that
aide users in designing, building, understanding, and modifying battle simulations in order to
analyze and evaluate various outcomes. Results of this work include the development of an
English-like, object-oriented simulation language called ROSS; the design and implementation
of a strategic air penetration simulation built in ROSS, called SWIRL; the design and imple-
mentation of a tactical ground-based combat simulation built in ROSS, called TWIRL; and the
design of a parallel processing computer architecture for distributing simulations to signifi-
cantly enhance their performance. These systems are reported in the following Rand publica-
tions:

The ROSS Language Manua, by D. McArthur and P. Klahr, N-1854-AF, September 1982. '

SWIRL. Simulating Warfare in the ROSS Language, by P. Klahr, D. McArthur, S. Narain,
and E. Best, N-1885-AF, September 1982.

TWIRL Tactical Warfare in the ROSS Languge, by P. Klahr, J. Ellis, W. Giarla,
S. Narain, E. Cesar, and S. Turner, R-3158-AF, October 1984.

Fast Concurrent Simulation Using the Time Warp Mechanism, Part I: Local Contru, by
D. Jefferson and H. Sowizral, N-1906-AF, December 1982."-

This report provides an introduction to the ROSS language. .-.
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SUMMARY

-. 4 o . o

This report provides an overview of ROSS, an object-oriented language currently being
developed at Rand. The goal of ROSS is to provide a programming environment in which
users can conveniently design, test, and modify large knowledge-based simulations of complex -: -
mechanisms.

Object-oriented programming languages, and ROSS in particular, enforce a message-
passig style of programming in which the system to be modeled is represented as a set of
objects and their behaviors (rules for object interaction). This style is especially suited to simu-
lation, since the mechanism or process to be simulated may have a decomposition that maps
naturally onto objects, and the real-world interactions between the objects may be easily
modeled by object behaviors and object message transmissions.

In addition to describing some of the basic ROSS commands and features, the report
discusses some software that interfaces directly with ROSS, including a sophisticated screen-
oriented editor and a color graphics package. Facilities for browsing among objects and their
behaviors are also described, and examples of browsing and editing are presented using -'-

SWIRL, a military combat simulation written in ROSS.
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L. INTRODUCTION

This report presents an overview of ROSS, an object-oriented simulation language.
ROSS is one of the first languages that attempts to marry artificial intelligence (Al) methods
with simulation technology. We have found that the marriage benefits both parties. Simula-
tion is a powerful inference and design tool that has been largely overlooked by Al researchers;
however, many human experts rely heavily on qualitative simulation to understand and fix

* complex systems. We believe that incorporating simulations as components would increase the
power of many expert systems. But while simulation is potentially a powerful tool for model-
ing, understanding, and designing complex systems, present-day simulators do not have the
necessary features to allow simulation to fulfill its potential. This report discusses these

* shortcomings and shows how ROSS uses Al techniques to create a simulation environment
that overcomes many of the limitations. The report is not a manual providing detailed discus-
sions of the commands or rationale of the ROSS language. Those discussions are provided in
McArthur and Klahr (1982), and equally detailed discussions of specific simulations written in
ROSS can be found in Klahr et al. (1982a, 1982b) and Klahr et al. (1984). The language and
its applications are described here only to the degree necessary to provide a general overview. .

SIMULATION AS A REASONING AND DESIGN TOOL

It is often useful to be able to understand a dynamic system without manipulating it in
the real world. Some real-world systems perform too slowly (e.g., economic systems), some

J. have dangerous consequences (e.g., nuclear reactors), and some are awkward or impossible to
manipulate directly (e.g., the solar system). In such cases, it is desirable to be able to draw
conclusions about the behavior of the system by reasoning with a model of the system, rather
than by observing the system itself.

Model-based reasoning has many uses. Most basically, it can be used to understand and......
predict the performance of the system. When the system is one that can be modified by the
user, model-based reasoning can also be used for intervention and design. In some systems,.. -

only limited changes are possible (e.g., a medical treatment modifies bodily processes in a con-
* strained way), but in others, the user has full control over structural properties (e.g., the design
* of a computer). For systems that can be modified, conclusions drawn by reasoning about sys-

tem behavior can be used as a basis for making coherent structural changes. These changes
then lead to an examination of the behavior of the new system, and more rounds of changes.
A successful design cycle ideally converges on a system that exemplifies some predetermined

* behavioral properties.
Unfortunately, the intuitive methods currently used to model systems are inaccurate and

incomplete, while mathematical (analytic) methods, though accurate, may be of limited value
because of the difficulty of formally modeling all the complexities of many dynamic systems.

* Simulation represents a useful tool for reasoning about the possible behaviors of dynamic..
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systems which potentially avoids the imprecision of intuition, while providing greater expres-
sive power than mathematics.' .

SHORTCOMINGS OF EXISTING SIMULATION TECHNIQUES

While simulation technology is potentially a powerful tool for modeling, understanding,
and designing systems, large-scale simulators do not provide the features necessary to allow
simulation to fulfill its potential. Four major shortcomings of present simulations and simula-
tore are described below.

Inability to Verify the Completenes and Accuracy of Models

A large-scale simulator typically contains many types of knowledge that collectively
comprise a model of a real-world system. Some types are explicitly represented and under-
standable, e.g., an object's properties, such as location, velocity, or altitude. Other types of
knowledge, such as how objects behave, how they interact with other objects, and how they
make decisions, may be impossible to understand. Users may have to search through volumes
of manuals, looking for behavioral descriptions that are buried in incomprehensible code. Even
if the information can be located and understood, the user cannot be sure that the system actu- , ,.
ally performs as specified. Much can get lost in the translation to computer code. Further,
knowledge is typically not well structured. Embedded assumptions are hidden, scattered, and
fragmented throughout the program. The initial structure of the first version of a simulation is -.

often lost as more complexity is added or modifications are made. As a result, there is no
assurance that the simulation embeds an accurate or complete model of the dynamic system.
The user cannot have confidence in either the predictions or the design advice the simulation
might suggest.

Inability to Modify Models and Construct Alternative Models

Models embedded in simulations cannot be easily modified, for many of the same reasons
they cannot be verified for accuracy. If the key behaviors of simulation objects are hidden in
masses of code--or worse, distributed across the code-users will not be able to alter them in a
coherent fashion. The simulation may thus inhibit rather than promote the easy changes
required to provide a good environment in which to investigate alternatives.

Incomprehensibility of Results

A simulation that is intelligible, and thus can be verified to represent an accurate model,
can be confidently expected to produce data that describe the behavior of the modeled dynamic
system. However, if the data are not presented effectively, it can be almost impossible to see
the most important behavioral properties of the system. For example, large military simula-
tions can generate hundreds of pages of numeric output for each simulation run. Determining
the main global features of the simulation's performance from such output is a slow process at
best; at worst, important trends may be overlooked entirely.

IWo do not claim that simulation is the only means of modeling a system and drawing useful conclusions about its -. -. -
behavior, or even that it is necessarily the best means. Simulation is just one of many modeling tools; moreover, simu- . ...- '
lations do not enable users to answer several important kinds of questions about the system being modele& For a
more detailed discussion of the inherent limitations of state-transition simulations, see Davis et al. (1982). .

V*% . ~ ~ %** . *% *. - .. 'I.%~.~-A xA.:.-: ' . .-....-.-
.~ ~~ --- ~- -n ~ .. *'...J.-....-
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* Long Run Times

Even simulations that are intelligible and supply the support required to try out a wide
* range of alternatives are not useful if they are too slow. Certainly, simulations that have

reached a final "production" state must execute rapidly. The analyst expects to simulate comn-
piex processes in minutes, not hours. On a more subtle level, it is frequently necessary to try

* out many parameter settings or investigate many alternative models to draw any reliable infer-
ences from a simulation. Such multiple experiments are prohibitive if each run takes more
than a few minutes. Unfortunately, many simulations run even slower than real time. (Our
approach to speed is discussed in Jefferson and Sowizral (1982), and the speeds of several dif-
ferent implementations of a ROSS simulation called SWIRL are discussed in Narain et al.

* (1983).)
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I. OVERVIEW OF THE ROSS LANGUAGE

The ROSS language (McArthur and Klahr, 1982) was designed at Rand to overcome
some of the shortcomings of existing simulations and to provide a superior environment in ..-.'.,--.
which to model, understand, and design dynamic systems. ROSS relies heavily on recently
developed Al techniques and expert-systems technology (Hayes-Roth et al., 1983). .

ROSS is an English-like, object-oriented language. Several examples of its English-like
flavor are given later in this report. More detailed examples are presented in Klahr et al.
(1984) and especially in Klahr et al. (1982b), which discusses virtually all the code of the .

SWIRL simulation. The English-like nature of the code makes it readable, and makes the
models embedded in it intelligible to users who may not be programming experts. ROSS's
object-oriented nature, which is shared by the SMALLTALK (Goldberg and Robson, 1983),
PLASMA (Hewitt, 1977), FLAVORS (Weinreb and Moon, 1981), and DIRECTOR (Kahn,
1979) languages, imposes a style of programming that is highly suited to simulation. Because '-

ROSS is interactive (it is implemented in Lisp), a ROSS simulation can be interrupted while it
is running, the state can be queried or the code modified, and the simulation can then be Nor-
resumed. With compiled simulation languages, such as SIMSCRIPT (Kiviat et al., 1968), the .
user must specify a simulation and let it run to completion before making any modifications.
Thus, alternate designs can be explored in ROSS substantially more quickly and easily.
ROSS's interactive nature also makes the debugging of simulations much simpler and more i .

rapid. Over the course of constructing large simulations, this can mean substantial savings in
development costs.

To make simulation results more comprehensible, ROSS provides a tracing facility that
produces textual simulation output. In addition, ROSS is directly linked to a "movie genera-
tor" and graphics facility, so that visual representations can be generated as the simulation is
running. This visual presentation is invaluable in discerning global trends in simulation per-
formance.

ROSS has been operational for several years and has been implemented in a wide variety
of Lisps (Narain et al., 1983), including Maclisp, Interlisp-20, Vax-Interlisp, Interlisp-D, Franz- . -

lisp, and Zetalisp. An earlier ROSS simulation, called SWIRL (Strategic Warfare in the ROSS
Language), for example, provides a prototype of a design tool for military strategists in the
domain of air battles (Klahr et al., 1982a, 1982b). SWIRL embeds knowledge about offensive
and defensive battle strategies and tactics. It accepts from the user a simulation environment
representing offensive and defensive forces, and it uses the specifications in its knowledge base
to produce a simulation of an air battle. SWIRL also enables the user to observe the prog-
ress of the air battle in time, by means of a graphical interface. Exploiting ROSS's ability to -'"

easily modify simulation objects and their behaviors, SWIRL encourages the user to explore a ..

wide variety of alternatives and to discover increasingly effective options in offensive and
defensive strategies. Below, we elaborate on the main features of ROSS that are used in 0

* SWIRL.

4- . -

4- .
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TM STRUCTURE OF OBJECT-ORIENTED SIMULATION MODELS:
OBJECTS, MESSAGES, AND BEHAVIORS

Object-oriented simulation languages enforce a style of programming that parallels the
way we intuitively think of the processes in the dynamic system we are modeling. Many sys- .

tes are naturally described in terms of separate components. For example, a car engine
includes a carburetor, a transmission, etc. Further, the behavior of the system typically arises
as objects interact by transmitting forces or information to one another, or by coming into
physical proximity. In ROSS, such systems am modeled in a very natural way by creating
objects to model each of the components of the dynamic system, and by modeling the interac-
tions between them as message passing.

In ROSS, messages are sent from one object to another, using the following kind of form:1

(1) (ask fighter-basl send flghter2 guided by gci to penstrator4). .

The general syntax for message transmoissions is:

(2) (ask <object> <messge>)

where <object> is the name of any ROSS object or actor, and <message> is any sequence of
Lisp atoms defining a legal ROSS message. In (1) above, the object named fighter-bael
receives the message send fighterg guided by gci3 penetrator4.

When an object receives a message, it mub have a way of responding. The user therefore
must define a behavior whose pattern matches the message and whose action. represent the
appropriate response. In this case, the behavior might be:

(3) (ask fighter-bse whoa reeiving
(send >fighter guided by >gci to >penetrator)

(ask !myself schedule after
!(ask myself recall your scramble-delay) seconds
tell fighter chase ptrator guided by !gci)

(ask !myself add !fighter to your list of fighters-scrambled)
(ask !myself remove !fighter from your list of - -

fighter-available)).

%0
More generally, behavior, like all computation in an object-oriented language, are defined by
message transmissions of the form:

(4) (ask <object> when receiving <mese-tempte> <body>) :'-.. .

where <object> is the name of any ROSS object or actor, <message-tenpate> is any sequence
of Lisp atoms defining a legal ROSS message, possibly including variables, and <body> is any
arbitrary ROSS or Lisp code.

Just as ROSS objects are meant to model components of a real-world system, behavior " '

model the repertoire of ways that particular kinds of objects can respond to different inputs,

'Remed ROSS keywords am shown in boldfaes.

.Z.--z-
• 4."o.

9!i
-----------------------------------
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information, or forces in the real world. Note that behaviors are attached to specific objects;
they are not global functions. This captures the notion that different kinds of real-world enti- 0
ties have different behavioral capabilities.

When the message in (1) is sent, fighter-basl will pattern-match that message (i.e., send
fighter2 guided by gc&3 to penetrotor4) against the message templates of all the behaviors it
knows, until it finds the appropriate one, in this case, send >fighter guided by >8ci to >penetra- -.''-
tor. This template matches the message because all the words in it are either identical to
analogous items in the message or are variabes. Variables are indicated by the prefixes > or +,Il
and they match any word in the incoming message. Thus, >fighter matches fighter2, and the
variable fighter will be bound to /ghter2 during the execution of the behavior associated with
this template. (Similarly, ges will be bound to gcs3, and penetrator will be bound to penetira-
tor4.) Pattern variables such as fighter are prefixed by ! in the behavior body. This prefix
forces the variable to be evaluated, i.e., its value is used,, not its name (ROSS is a nonevaluat-
ing form of Lisp). The behavior body itself embeds message transmissions, either to the
object that received the current message (the object is always the value of the variable myse#)
or to any other object. Thus, a single message transmission can trigger an arbitrarily complex
chain of subsequent transmissions.

OBJECT HIERARCHIES AND INHERITANCE

Another important semantic concept in ROSS is that of object hierarchies and inheri-
tance. In item (1) above, a message was sent to an object called fighter-basel, while in (3), the
user defined a behavior for an object called fighter-base. How can fighter-bamel use a behavior ___.__.

that was defined for fighter-bae? The answer is that although fighter-base was not given this
behavior directly, it can inherit it. To understand how inheritance works in ROSS, we need to
understand how objects are created.

Objects can be created by forms such as

(5) (ask fighter-base create instance fighter-basel).

This message causes fighter-basel to be created as an instance of fighter-base. Semantically,
fighter-base should be interpreted as denoting the class of all fighter-bases, while fighter-base
denotes a particular element of that class. This fundamental distinction between generic and " ".
instance objects is very useful in modeling real-world systems, which have different kinds of
components, each instance of which has the same or similar properties. For example, all dogs
(at least all healthy, normal dogs) have four legs, and most dogs bark when they see the mail-
man. A good modeling language should provide a way to make these quantified statements and
to infer their truth for any particular dog. By allowing the creation of generic objects, ROSS
provides a means of making quantified statements; by allowing inheritance, ROSS enables
these statements to be instantiated for individuals.

The procedure of inheritance that models this instantiation is very simple. If an object
(e.g., fighter-bael) has been created as an instance of a class (e.g., fighter-base), when the .

instance receives a message, it first looks at behaviors that have been explicitly attached to it .

lie comens in two basic type evalating and nonevaluatig. Anevahtin (or VAL) vsion evaluataru-
ment to fintion cal before Ovi them to the function; a nonovaating (or EVALQUOT(Z) version does not. For
exmope, the ZVALQUOTE form liUa b) and the LVAL form (at 'a S) both give the -m rmit, namly a it of two

eleent., a.and b.
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Sto find one that matche the mesage. If it fails, it will consult the behaviorm of the class
objects of which it is an instance.

Simple inheritance has been generalized in two ways in ROSS. First, class objects may
be subclasses of other objects, just as instances are members of classes. To create a subclass,

-; one might say

(6) (ask fighter-bases create generic prop-fighter-base)

(7) (ask fighter-base create generic jet-fighter-base).

This would indicate that there are two different kinds of fighter-bases, those that handle jets
" and those that do not. The importance of subclassing is that it allows users to express quanti-

fled statements of arbitrarily limited scope. There may be some things that all fighter-bases
can do, some that only jet bases can do, and some that only prop bases can do.

Subclassing can be complex in ROSS, inducing a class-inclusion object hierarchy. An
example of the object hierarchy used in SWIRL is shown in Fig. 1. When an instance of a

.- generic object in this hierarchy receives a message, it does an inheritance search up from its
location in the leaves of the hierarchy, to find an ancestral object that has a behavior matching
the message it has received. Thus when matching an incoming message, fghter-basel will
search, in order, object behaviors for fighter-basel, fighter-base, fixed-object, and simulator. -_ * -

Simulator

Moving-object Fixed-object

Penetrator Fighter Missile

Radar Command Filter Fighter Target
Center Center u

AWACS GCI SAM .. '-",

Fig .,
" ~Fig. 1-SWIRL hierarchy of basic objects .

* - ;:..:
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The object hierarchy in Fig. 1 is not strictly a tree. AWACS (a type of airborne radar) is
a subclass of both moving-object and radar. This multiple inhertance is the second way simple
inheritance has been generalized in ROSS. Multiple inheritance was not a feature of earlier
object-oriented languages, but it has proven highly useful in our ROSS simulations. Its value
derives from the fact that it is often useful to view an object from multiple perspective., or as
being described in several ways, not as a fixed kind of thing. From one perspective, an
AWACS can be viewed as having the properties of an aircraft, or a moving object; from
another perspective, it can be viewed as a detector of electronic signals, or a radar. 6

Finally, although we have been talking primarily about the inheritance of behaviors,
ROSS objects also possess attributes, and they too can be inherited. The behaviors of ROSS
objects model the dynamic actions and reactions of real-world entities, ie., how they respond
to various inputs; the attributes of ROSS objects model the static features or properties of such
objects (which may, however, dynamically change during a simulation). For example, we might
have created the class object fighter-base as follows:

(8) (ak fixed-object re"ate geerie fighter-bae with
position (00) osition
status active active or destroyed
filter-center nil ;each base has one
fighters-available nil ;list of free fighters
fighters-scrambled nil ;occupied fighters
fighters-destroyed nil ;its fighters lot
scramble-delay 10 ;time to scramble once told
alert-delay 10 ,*ay to alert
alert-duration 1800 ;how long to remain alert

raw 400.0) ;how far its fighters can go
;,';.'..,.'..

Now, when fighter-basel wants to find out its alert-duration, it uses the message transmission

(9) (ask flghter-bmel reeall your alert-duration)

to find the value associated with fiAghter-base, effectively making the inference that since all ..-

fighter-bases have an alert-duration of 1800 seconds, it must have an alert-duration of 1800
seconds. Some of the attributes of fighter-bae are to be interpreted as defaults, rather than as
required values. For example, although all fighter-bases have an alert-duration of 1800 0
seconds, the position of a particular fighter-base can only be inferred to be (0 0) if no other
information about that base is available, that is, if the base does not have a position explicitly
associated with it. Also note that some attributes are known to exist but are not given any
default values. These attributes have a nil initial value. When fighter-bas is asked to create
instances of itself, values for these attributes must be specified.

ROSS provides commands to create and manipulate the attributes of objects. For exam-
ple, the message

(10) (Wk fighter-blas set your status to destroyed)

, .,

,..... .

- . . - - - . ~. 5*~k. .h , -. ,
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will set the status attribute of fighter-basel to be destroyed. (If the particular attribute does not
exist for the object, it is created.) The following message shows an example of modifying an -

inherited attribute:

(11) (ask fighter-basel increment your alert-duration by 100).

If fighter-bsel did not have a value for the attribute alert-duration, it would inherit the value
of 1800 seconds from the fighter-base class to which it belongs, add 100 to it, and incorporate
the result, 1900, as the value of its alert-duration attribute (without effecting any attributes of
fighter-base). Attributes can be created and manipulated dynamically within a simulation or by
a user at any time.

GETTING SIMULATIONS STARTED: PLANNING AND THE CLOCK _.

We have described computation in ROSS, but not simulation. A simulation language
must provide a way of modeling events occurring over time. ROSS provides two such fascilities.
First, ROSS allows any object to plan an event to happen at any future time, using commands
of the form

(12) (ask fighter-basel plan after 20 seconds
tell fighterl chase penetrator2 guided by gci3).

Once fighter-basel has issued this command, ROSS will ensure that the message embedded in
the plan is sent to fighterl, not immediately, but after 20 seconds. (Of course, "20 seconds'
refers to simulated real time, not real time or CPU time). Operationally, this means that all
messages planned to be sent 19 seconds or less in the future are guaranteed to be sent before
this message, and all planned for 21 seconds will be sent after it.

To execute planned events, ROSS provides a clock. The clock is a primitive ROSS object .
(called nclock) that advances simulation time when given commands such as

(13) (ask nclock tick).

A "tick" is a variable number of seconds, determined by the ticksize attribute of nclock. When
the clock ticks, it not only advances simulated real time by a given interval of time, it also
sends each of the messages (in time order) that have been planned for the current time inter- S
val. For example if (12) then (13) were issued at time 120 with a clock ticksize of 25 seconds,
the simulated real time would first advance to 140 seconds (the time of the next message to be
sent in the current time interval); the message embedded in (12), i.e., tell fighterl chase pene-
trator2 guided by eci3, would be transmitted; and finally, the clock would advance to 145 and
end the current tick. V

The user can control the size of a tick by giving commands such as

(14) (awk nclock set your ticksize to 20).

00

Because the user can decide how many ticks to execute at a time and can specify the size of a
tick, he has complete control over the "grain" of the simulation. At one extreme, he can let a

%. '-.
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10 ROSS: AN OBJECT-ORIENTED LANGUAGE FOR CONUTRUCT!NG SIMUATIONS

simulation run to completion without interruption; at the other, he can stop it after a very
short duration, examine the state of any of the simulation objects in detail, and then resume
running.

ADVANTAGES AND DISADVANTAGES OF OBJECT-ORIENTED LANGUAGES *.-*- -

FOR SIMULATION

The main advantage of object-oriented languages for simulation is that they immediately
suggest a way to view the dynamic system to be modeled. Our experience with SWIRL (Klahr
et al., 1982a, 1982b) and TWIRL (Klahr et al., 1984) indicates that an object-oriented style of
computation is especially suited to simulation in domains that may be thought of as consisting
of autonomous intentionally interacting components. In such domains, the programmer can
discern a natural mapping of their constituent components onto objects and of their inten- -
tional interactions, such as communication, onto message transmissions. Indeed, experts in
many domains may find the object-oriented metaphor a natural one around which to organize
and express their knowledge (Klahr and Faught, 1980).

However, in developing simulations in ROSS, we have discovered some events, or interac-
tions between real-world objects, that are not as easily modeled as we might like them to be.
These events are often side effects of deliberate actions (e.g., a penetrator appearing as a blip
on a radar screen is a side effect of the penetrator flying its course and entering a radar range).
Such events are important, since they may trigger other actions (e.g., a radar detecting a pene-
trator and notifying a filter center). However, these nonintentional events do not correspond
to real-world message transmissions (e.g., a penetrator does not notify a radar that it has
entered the radar's range). An important issue in the development of SWIRL has been the
problem of capturing these nonintentional events in an object-oriented framework (i.e., via
message transmissions). This problem and its various possible solutions are discussed in Klahr
et al. (1982b).

ENGLISH-LIKE CODE IN ROSS

While the style of programming enforced by ROSS's object-oriented nature is the most
important factor contributing to the modifiability of ROSS models, the highly readable charac-
ter of the code is also important. Two features make ROSS code English-like. First, because
behavior invocation uses pattern-matching, the user can define arbitrarily verbose behavior
templates if he wishes. Thus, in (3) above, the user employed the template S

(15) (send >fighter guided by >gci to >penetrator)

rather than the less English-like and less comprehensible

(16) (send >f guided-by >g >p)

even though either is quite acceptable as a ROSS command. If one were to implement
behaviors in Lisp as functions, the resulting function calls would about as unintelligible as the
code in (16): " -

v-%°." .•'.
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(17) (send-guided-by-to fighter gci penetrator).

ROSS allows for even greater readability through its abbreviations package. This package
was used in the development of SWIRL and TWIRL to generate code that would be .. -.

comprehensible to strategic and tactical warfare experts who were programming novices. For -.
example, after specifying the following abbreviations:

(18) (abbreviate '(ask !myself) 'you) , .

(abbreviate '(ask !myself recall your) 'your)(abbreviate '(!) 'the)

we could rewrite (3) as

(19) (ask fighter-base when receiving
(send >fighter guided by >gci to >penetrator)

(you schedule after !(your scramble-delay) seconds
tell -the fighter chase -the penetrator guided by -the gci)

(you add -the fighter to your list of fighters-scrambled)
(-you remove -the fighter from your list of fighters-available)).

The ROSS abbreviations package allows for personalized English-like programming, in -n.,-

contrast to languages like ROSIE (Fain et al., 1981), whose English-like syntax is fixed by the ---

language designers. A personalized English syntax enhances the writability of code, whereas
languages whose syntax is fixed often prove difficult to use because the user falsely assumes
that his English syntax is the language's. In ROSS, this problem does not exist, because the
user does define his own language syntax.

Second, even extensive use of the ROSS abbreviations package carries almost no compu-
tational overhead. ROSS expands the abbreviations only once, at load time, somewhat like
displacing macros. Other English-like languages may incur high costs in parsing time. In fact,
more time can be spent parsing the English-like surface representation into a machine-
runnable form than actually executing the runnable code.

INTERACTIVE BROWSING AND EDITING FACILITIES

ROSS encourages the development of highly structured, interactive browsing and editing f

facilities. An interactive browser can be thought of as an interface that is an expert in the
structure of a simulation and so can quickly guide even a naive user to any piece of a simula-
tion model-any object or behavior. An interactive editor extends the browser by permitting
the user to modify the code, once he has found the part of the simulation model he wishes to
change. Collectively, these features facilitate rapid, coherent modification of models by users
who are familiar with the models, but not necessarily with the specifics of their implementation.

Figure 2 shows a user interaction with a simple but effective browser we constructed for
the SWIRL simulation. Item (20) is the top-level menu. (Virtually all user interaction with
SWIRL involves menu selections.) The user selects option 9, which invokes the browser to
guide him through the code. If the user has been interacting directly with ROSS, and not with
the SWIRL menu, the browser could have been invoked by "(ask browser help)." The browser
is a full-fledged ROSS object. At (21), the browser presents a menu of all SWIRL objects it

..* *.
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12 ROSS: AN OBJECT-ORIENTRD LANGUAGE FOR CONSTRUCTING SIMLATIONS

(20) Select option:
1-Break into ROSS
2-Load compiled SWIRL
3-Load interpreted SWIRL
4-Recompile interpreted SWIRL files
4-Recompile interpreted SWIRL files
5-Load a simulation environmentI 6-Run simulation with graphics
7-Run simulation without graphics
6-Activate historian and reporter
9-Browse or edit behaviors

10-Exit SWIRL & ROSS 9

(21) 1.-PENETRATOR
2.-FIGHTER
3.-GCI
4.-SAM
5.-AWACSj 6.-RADAR
7.-FILTER-CENTER
8.-COMMAND-CENTER
9.-FIGHTER-BASE

10.-TARGET
11.-MISSILE
12.-MOVING-OBJECT
13.-FXE-OBJECT
14.-SCHEDULER.. .-

15.-PHYSICIST
16.-MATHEMATICIAN

I Give number of object you wish to examine, or NIL to stop: 6

(22) Documentation is available on the following templates:
1.-(>THING IS IN YOUR RANGE)
2.-(TRANSMIT TO YOUR FILTER-CENTER THAT +MESSAGE)
3.-(>PENETRATOR IS OUT OF YOUR RANGE)

p 4.-(TRY TO CHANGE GUIDER OF >FIGHTER TO >PENETRATOR) S
5.-(.PENETRATOR IS DESTROYED)
6.-(>PENETRATOR HAS CHANGED ROUTE)

* 7.-(IS >PENETRATOR STILL IN YOUR RANGE)
8.-(GUIDE >FIGHTER TO >PENETRATOR)
9.-(STOP GUIDING >FIGHTER)

1.-(FIND A NEW GCI TO GUIDE >FIGHTER TO >PENETRATOR) -

I1.-(>FIGHTER HAS SIGHTED >PENETRATOR)
12.-(>FIGHTER UNABLE TO CHASE >PENETRATOR)
13.-(ARE SATURATED)
14.-(ARE NOT ECMED OUT BY >PENETRATOR) ~
15.-(CHECK FOR NEW PENETRATORS)

Give list of messages you wish to examine, or Tfor all, or NIL to stop: 8

Fig. 2-Trace of interactive browsing in ROSS and SWIRL
(usr's menu selections in boldface)
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(23) L-ENGLISH DESCRIPTION
2.-SWIRL CODE .
3.-BOTH

Type option, or NIL to stop: 1 .-.

(ask radar documentation for
(guide >fighter to >penetrator) is

I Sender: fighter or another radar handing over guidance of a fighter.
Guides a fighter to a pem Four case arise: If the radar is destroyed
it can do nothing. The fighter just follows unguided policy.
If the fighter seeks guidance towards a penetrator that is not currently
tracked by the radar, it tries to find another radar to guide the
fighter. If this fails, it tells the fighter to follow unguided policy.
If the radar is blinded, it tries to find another radar to guide the
fighter. If this fails, it tells the fighter to follow unguided policy.
Otherwise the radar calculates an intercept point of the fighter
with the penetrator and tells fighter to vector to this point. 1)

Fig.2-(continued)

knows about, and the user picks the one that he wishes to examine. At (22), the message tern-
plates of the selected object are displayed, and again the user selects one. Note how both the
object-oriented structure of the simulation and the English-like nature of the message tern-
plates facilitate finding the exact part of the simulation the user wishes to examine. The.-..- -.-

object-oriented structure imposes a highly modular decomposition of the model, while the
English-like templates make apparent exactly which behaviors are being modeled. At (23), the
user chooses simply to see if the selected behavior embeds the right model. Had he selected
option 2, ROSS would have put him into an editor with the code for the behavior.

USING ROSS IN THE EMACS EDITOR

ROSS is an interactive programming environment, since it is implemented in Lisp. We
have discussed several examples of how this interactivity assists the user in understanding his
simulations. However, standard interactive programming environments have limitations, most
of which stem from the "typewriter" mode of interaction almost all current software enforces.
Even though most users run Lisp and ROSS on a terminal with a screen, the screen is useless.
Like a typewriter-based terminal, only the current line can be submitted for evaluation. Previ-
ous lines cannot be referenced.

We sought to make ROSS a fully screen-oriented interactive environment in several way
First, we wanted to make each command on the screen referenceable. Second, we wanted to
give the user the ability to create multiple windows on the screen, each ssociated with a dif-
ferent process, such as an editor, a compiler, or a ROSS program. Finally, we wanted to allow ..

users to "program by pointing." The user should be able to move a cursor to any expression on -
the screen and tell ROSS what he wants done with the expression.

,,. ,.. ...
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To achieve these goals, we modified ROSS to run as a process under Emacs (Gosling,
1981), a customizable, screen-oriented editor. In this environment, ROSS is inside an Ems0
window, and all forms typed go into the window's buffer. When the user types a carriage
return, Emacs takes the form just typed and submits it to the ROSS process for evaluation,
printing the value returned just below the form submitted. Thus, in simple interactions, the
environment looks just like a standard iAsp session. However, because the user is in a screen-
oriented editor, several new capabilities are available. Emacs commands can be used to move
the cursor to and mark any previous form in the ROSS buffer. Emacs commands can then be
used to apply several operations to the marked item, including the following.

" Evakuate the item. If the marked item is a legal Lisp or ROSS form, it can be resub-
mitted to the ROSS interpreter, and its value will be returned. The expression can be
edited with any standard editor commands before reevaluation.

" Compile the item. If the marked item is the name or definition of a Lisp function or9
ROSS behavior, a few keystrokes will tell Emacs to create a Lisp compiler process,
associate it with a new window, submit the marked definition to the process, and
return the result. In this way, compilation can be much more incremental and interac-
tive than many Lisp dialects permit.

* Edit the item. If the marked item is the name or definition of a Lisp function or
ROSS behavior, the user can request Emacs to visit the file that contains the function
or behavior. The user does not need to know where the function or behavior is
defined. Emacs will create a window for the appropriate file and put the user in the
file at the location of the specified definition. When the user is in this window, all the
above capabilities are still at his disposal, in addition to the basic editor commands for
deleting, adding, moving, and searching text. In particular, he can point to parts of
definitions and ask for them to be evaluated. In this fashion, definitions can be
rapidly and incrementally modified.

*Reformat the item. If the marked item is a Lisp expression, a single command can be
used to reformat the expression in a more readable way. This facility is especially use-
ful for cleaning up function or behavior definitions in their files.

The ROSS-Emacs facility reduces the model-builder's memory load by remembering the *

location of definitions. At the same time, it makes the examination and modification of
models a rapid process by automatically handling many low-level programming details.

TEXTUAL OUTPUT FACILITIS

We have discussed several features of ROSS that enable even naive users to locate, -

understand, and change complex simulation models. We now discuss some ways in which
ROSS simplifies the analysis of simulation results, which too can be complex.

First, the interactive browsing in ROSS is easily extended to recording simulation events.
For example, the recorder and historian we constructed for SWIRL work almost exactly like
the browser. The recorder and historian are invoked by selecting option 8 in the SWIRL menu
(item (24) in Fig. 3). Like the browser, the recorder and historian know all the objects and
behaviors that comprise the SWIRL simulation and can guide the user through the code by

dipaigmenus. The menus at (25) and (26) are similar to those at (21) and (22) in Fig. 2.*>*.-
However, when the user selects a behavior, the recorder and historian do not display the0
bhavior, as the browser does; rather, they keep a record of each time that behavior is executed

V;.
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(24) Select option:
1-Break into ROSS
2-Load compiled SWIRL S
3-Load interpreted SWIRL
4-Recompile interpreted SWIRL files
5-Load a simulation environment
6-Run simulation with graphics
7-Run simulation without graphics ..

-- Activate historian and reporter
9-Browse or edit behaviors

10-Exit SWIRL & ROSS 8

Specify file to record history: RECORD

Output to terminal (T or NIL): T

(25) 1.-PENETRATOR
2.-FIGHTER
3.-GCI
4.-SAM .0
5.-AWACS
6.-RADAR
7.-FILTER-CENTER
8.-COMMAND-CENTER
9.--FIGHTER-BASE

10.-TARGET --
11.-MISSILE
12.-MOVING-OBJECT
13.-FIXED-OBJECT
14.-SCHEDULER
15.-PHYSICIST
16.-MATHEMATICIAN

Give list of objects in parentheses, e.g., (1 4 8), or NIL: (1 2 4 5 6 7 9)

(26) PENETRATOR has the following message templates:
1.-(FLY TO >PLACE)
2.-(DROP >M MEGATON BOMBS EXPLODING AT ALTITUDE >H)
3.-(>RADAR IS NOW TRACKING YOU)
4.-(>RADAR IS NO LONGER TRACKING YOU)
5.-(EVADE)
6.-(RESCHEDULE YOUR NEXT SECTOR)
7.-(MAKE A RANDOM TURN)
8-(MAKE A TURN >N DEGREES >DIRECTION)

Give list of message numbers to record (T for all): T

Fig. 3-Trace of interactive recording in ROSS and SWIRL
(user's menu selections in boldface)

-. .;. . . ,.
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[User and recorder interact to specify trace for other objects]

Select option:
1-Break into ROSS
2-Load compiled SWIRL
3-Load interpreted SWIRL
4-Recompile interpreted SWIRL files 9.
5-Load a simulation environment
6-Run simulation with graphics
7-Run simulation without graphics
8--Activate historian and reporter
9-Browse or edit behaviors

10-Exit SWIRL & ROSS 7

(27) Type number of ticks to run: 100

(28) 0.0 (AWACS3 LOOK FOR PEN3)
0.0 (AWACS3 LOOK FOR PEN2)
0.0 (AWACS3 LOOK FOR PENi)
0.0 (AWACS2 LOOK FOR PEN3)
0.0 (AWACS2 LOOK FOR PEN2)
0.0 (AWACS2 LOOK FOR PENI)
0.0 (PEN3 FLY TO (880.0 210.0))
0.0 (PEN2 FLY TO (352.0 700.0))

0.0 (GCI3 IS PEN2 STILL IN YOUR RANGE)
0.0 (GCI2 IS PEN2 STILL IN YOUR RANGE)

0.0 (PENI FLY TO (220.0 1085.0))
492.891342 (AWACS1 PEN2 IS IN YOUR RANGE)

492.891342 (AWACS1 ARE NOT ECMED OUT BY PEN2)

[Simulation continues for 100 ticks]

4 Select option:
1-Break into ROSS
2-Load compiled SWIRL
3-Load interpreted SWIRL
4-Recompile interpreted SWIRL files
5-Load a simulation environment
6-Run simulation with graphics
7-Run simulation without graphics
8-Activate historian and reporter
9-Browse or edit behaviors

10-Exit SWIRL & ROSS 10

Fig. 3-(continued)

p
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during a simulation. An example of a partial record is shown at (28) in Fig. 3. It indicates
both the simulation time at which the behavior was invoked and the message transmission that
caused the invocation.

The recorder and historian allow simulation output to be tailored in several ways. First, -

* because the specification of the objects and behaviors to record is done interactively, recording
* ~~can be interwoven with running of the simulation (see (27) in Fig. 3). Thus, the user can C--:'

rapidly change the parts of the simulation model he is examining. Second, the user has a great
deal of control over which message transmissions are traced. In standard procedural languages,0
the only option available is to trace a function or not to trace it. Object-oriented languages
like ROSS allow the user to trace al the message transmissions for all instances of a given
class of object, or a specific message transmission for all instances of a class, or even particular
types of message transmissions for specific instances of a class of objects. For example, in

0 SWIRL one can focus on just the activities of fighterl, rather than all fighters.

GRAPHICAL OUTPUT FACILITIES

A primary component of both the SWIRL and TWIRL simulations is their color graphics
output facility. Although the graphics package is not an integral part of the ROSS language,
we have developed a clean and direct interface between it and ROSS.3 For each ROSS object,
we define a symbol and color. Similarly, we define symbols for events that we wish to see
graphically represented (e.g., communications between objects, military combat, radar detec-
tions). Each time the clock ticks, the graphics screen is updated to show the new locations of

* the objects and any new events that have occurred since the last clock tick. In a sense, the
graphics package creates an animated movie of the simulation as it proceeds over time.

Graphics has provided us with a powerful tool for building and understanding simula-
tions. Being able to watch the simulation as it is running enables the user to readily test out
and verify behaviors, notice global interactions among the objects and events, zoom in on par-
ticiflar areas of interest, and determine the effects of alternative models and behaviors.

3SWIRL and TWIRL graphics were written in C by William Giarla. They were built upon graphics work pre-
* viously developed at Rand for other projects.



III. CONCLUSIONS

The ROSS language represents our first attempt to develop a relatively complete model-
ing environment. Ideally, such an environment can help users understand, reason about, and -

even design a wide variety of complex entities. In this report, we have discussed how ROSS
facilitates the construction and viewing of models, through object-oriented programming tech- .0
niques, English-like language syntax, interactive debugging and editing tools, and textual and
graphical output facilities. Much work remains. We are presently investigating the Time
Warp mechanism (Jefferson and Sowizral, 1982), a methodology for speeding up simulations by . : -
distributing them. In addition, we wish to develop modeling capabilities that go beyond simu-
lation. We view a simulation as one of several kinds of models. Although other approaches to
modeling are less well developed (de Kleer and Brown, 1983), they deserve attention because
simulation alone enables users to answer surprisingly few questions about the behavioral
characteristics of their models (Davis et al., 1982). To improve modeling as a reasoning and
design tool, we must not only make it easier for users to ask questions of their models, we must
greatly extend the range of questions they can ask.

180
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